
Native	Support	for	Explicit	
Stacks	in	LLVM

Kavon	Farvardin																											Simon	Peyton	Jones
University	of	Chicago* Microsoft	Research

9 September	2017

*This	work	was	started	while	at	Microsoft	Research



GHC’s	LLVM	Backend

• It	often	produces	faster	programs	(~7%)	than	native	codegen.

• The	only	option	for	ARM	systems.

• Many	of	LLVM’s	optimizations	are	ineffective.

Problem
GHC	is	forced	to	emit	unusual	LLVM	code,	

which	evades	analysis.



Mismatch:	LLVM’s	Implicit	Stack

blockA:
...
x = a + 2
y = call f (b)
z = x * y
...

x is	live	across	this	call

How	will	x	be	preserved?



Mismatch:	Cmm has	an	explicit	stack

blockA:
...
x = a + 2
Sp[8] = x
Sp[0] = &returnPoint
tailcall f (b, Sp)

x	is	saved	to	stack
returnPoint:
y = R1
x = Sp[8]
z = x * y
...

physical	return	reg

a	block’s	address



Mismatch	Consequences

• GHC	must	break	every return	point	into	a	new	LLVM	function.
• Every	allocating	function	is	split	into	pieces.
• Loops	within	a	function	are	effectively	destroyed.

• LLVM	does	not	handle	it	well.
• Loop	optimizations	no	longer	apply.
• Inliner is	befuddled	and	tries	to	piece	together	the	program.



Advantages	of	an	Explicit	Stack

• Precise	Garbage	Collection
• Stack	overflow	occurs	regularly,	must	be	recoverable.

• Lightweight	Concurrency	
• Millions	of	heap-allocated	stacks!
• Express	one-shot	continuations	for	lightweight	threading

• Other	customized	implementations	of
• Exception	handling
• Argument	passing
• …



Upgrading	LLVM



y1 ⟵ 10 y2 ⟵ call f(b)

y ⟵ ϕ(y1, y2)

retPt:

blockB: blockA:
function	g

Typical	LLVM	Control-flow	Join



y1 ⟵ 10 Sp[0] = retPt
tailcall f(Sp, b)

y ⟵ ϕ(y1, ??)

retPt:

blockB: blockA:

function	g function	f

z ⟵ 20
ra ⟵ Sp[0]
tailcall ra(Sp, z) 

entry:

Unworkable	Explicit	Stack	Usage	in	LLVM



y1 ⟵ 10 r ⟵ xcall(Sp,f,b)

y2 ⟵ r[1]

y ⟵ ϕ(y1, y2)

retPt:

blockB: blockA:
function	g function	f

z ⟵ 20
rs ⟵ empty struct
rs[1] ⟵ z
rs[0] ⟵ Sp
ret rs

entry:

Proposal:	a	new	call	instruction	“xcall”



Overview	of	the	“xcall”	instruction.

declare %someTy @llvm.xcall(
i64*,
{i64*,…} (i64*,…)*, ...)

Stack	Pointer}
Function	to	be	called

}
Other	arguments	passed	

to	function

Some	details	omitted	for	clarity.



Properties	of	the	xcall instruction.

- Callee must	be	an	“xcalled”	function.

- The	word	pointed	to	by	Spmust	be	free	to	use.

- The	LLVM	stack	will	not	change.

- Otherwise,	an	xcall behaves	like	a	normal	LLVM	call.

rv ⟵ xcall (Sp, f, b)
...



Liveness	Requirement

blockA:
...
x = a + 2
Sp[8] = x
r = xcall (Sp,f,b)
Sp’ = getVal 0, r
x’ = Sp’[8]
...

An	xcall passes	all
of	the	live	values!

Thus,	we	disallow	having
values	live	across	an	xcall.

(also	a	property	of	CPS	calls)



Lowering	xcall to	Assembly

blockA:
...
x = a + 2
Sp[8] = x
r = xcall f (Sp, b)
Sp’ = getVal 0, r
x’ = Sp’[8]
...

store &retpt, Sp[off]
jump f
expand

This	becomes	a new	block,
‘retpt’,	with	no	predecessor.

split



Properties	of	an	xcalled function.

- Sp[0]must	not	be	overwritten.

- Sp’	must	point	to	the	same	value	as	Sp,	where	Sp’ =	vals[0].

- The	calling	convention	must	pass	all	values	in	register.

- Otherwise,	the	ret behaves	like	a	normal	return.

define cc _ @f(Sp, b) xcalled {
..
ret {i64*,…} vals



Lowering	xret to	Assembly

blockA:
...
z ⟵ 20
rs ⟵ undef
setVal 1, z, rs
setVal 0, Sp, rs
xret rs

jump *(r0)

asm_blockA:
...
mov 20, r1

Sp is	in	r0	as	defined	
by	the	calling	convention



Evaluation



LLVM	Backend	Comparison	(GHC)

Program Size Allocs Runtime Elapsed TotalMem
----------------------------------------------------------

Min -8.5% -0.0% -6.6% -6.7% -3.3%
Max 0.0% +0.2% +4.8% +5.0% 0.0%

Geo Mean -1.3% +0.0% -0.5% -0.7% -0.0%

Program	performance	changes	
when	using	xcall instead	of	“proc-point	splitting”.

WIP	Notes:	
- 5	of	107	programs	do	not	work	yet.
- xcall programs	are	hampered	by

temporary	workarounds	that	disable	
some	optimizations.



Future	Work



Optimizing	under	the	Liveness	Requirement

x ⟵ 8
Sp[8] ⟵ x
r ⟵ xcall(Sp,f,b)
Sp’ ⟵ r[0]
x’ ⟵ Sp’[8]

x ⟵ 8
xstore(Sp,8,x)
r ⟵ xcall(Sp,f,b)
Sp’ ⟵ r[0]
x’ ⟵ xload(Sp,8)



Remaining	Work

1. Stabilize	and	write-up	the	xcall design	and	implementation.
2. Submit	patch	to	upstream	LLVM.
3. Once	the	patch	has	landed	in	an	LLVM	release,	merge	into	GHC.

Branch	on	GHC	git: wip/kavon-nosplit-llvm
Depends	on: github.com/kavon/ghc-llvm

Contributions	Welcome!


