
Practical	Conversion	from	
CPS	to	Direct	Style

Kavon	Farvardin and	John	Reppy
University	of	Chicago

MWPLS
December	2,	2016

CPS	is	great	for	compilers

• Evaluation	order	is	made	explicit.

• Control-flow	is	regularized.

• Useful	for	both	high-level	and	low-level	representations.

• Easily	supports	non-local	control-flow;	exceptions,	call/cc,	etc.

Bringing	Continuations	to	LLVM

• Ongoing	work	to	explore	implementations	of	continuations.

• Native	codegen is	a	pain;	using	LLVM	is	easier.

• Recent	work:	heap-allocated,	first-class	conts with	LLVM

• How	can	a	CPS-based	compiler	use	LLVM	with	a	stack?

CPS	with	a	stack

fun fib (n, k) =
if n <= 2 then k 1
else

cont minus2 f_1 =
cont add f_2 =

k (f_1 + f_2)
in

fib (n-2, add)
in

fib (n-1, minus2) Downward	funargs

minus2’s	closure	
dies	here

Undoing	CPS	in	theory

Key	Observation*

Most	continuations	created	by	CPS	are	well-behaved.

*	by	Danvy,	Kelsey,	etc.

Undoing	CPS	in	practice

It	starts	with	a	good	intermediate	representation:

• Continuations	and	functions	are	different.

• Continuation	parameters	added	by	CPS	are	distinguished.

cont k () = _ in _ <-> throw k ()

fun f (x, y / k) = _ <-> f (1, 2 / k’)

Noninvasive	Compiler	Upgrades

DS CPS
CPS	convert

CFG
(first-order)

Closure	
convert LLVM.	.	.

DS	convert

Closure	convert

Noninvasive	Compiler	Upgrades

DS CPS
CPS	convert

CFG
(first-order)

Closure	
convert LLVM.	.	.

Closure	&	DS	
convertClassify

Continuations

Classifying	Continuations

fun g x = x
fun f x y = if x > 10 then h((g x) + y) else h x

fun g (x / k) = throw k x
fun f (x, y / k) =

cont doH z = h (z + y / k) in
if x > 10

then g (x / doH)
else h (x / k)

CPS

Non-tail	call
Tail	call

Return	throw

Return	continuations	are	
only	ever	used	or	passed	
from	the	same	function.

Higher-order	DS

Converting	to	Direct	Style

fun g (_, x) = return x
fun f (ep, x, y) =

block doH (ep, z, y) =
tailcall h (z + y)

if x > 10
then z = call g x

goto doH (ep, z, y)
else tailcall h x

First-order	DS

fun g (x / k) = throw k x
fun f (x, y / k) =

cont doH z = h (z + y / k) in
if x > 10

then g (x / doH)
else h (x / k)

Higher-order	CPS

Taming	CPS	Optimizations

• Arity	raising

• Expansive	inlining

• …	maybe	others?

fun foo t = let
val x = #1(t)
val t = #2(t)
...

fun foo x y = let
...

Unbox	tuple

Taming	CPS	Optimizations

fun foo (_ / fooRet) =
fun bar (/ barRet) = throw barRet ()

fun g(_ / gRet) =
if ...
then bar(/ gRet)
else throw gRet ()

cont joinK () =
...
throw fooRet ()

in
g (_ / joinK)

Taming	CPS	Optimizations

fun foo (_ / fooRet) =
fun bar (/ barRet) = throw barRet ()

fun g(_ / gRet) =
if ...
then bar(/ gRet)
else throw gRet ()

cont joinK () =
...
throw fooRet ()

in
g (_ / joinK)

CFA	says	barRet = joinK,
so	we	inline	the	throw	to	barRet.

Taming	CPS	Optimizations

fun foo (_ / fooRet) =
fun bar (/) = ... throw fooRet ()

fun g(_ / gRet) =
if ...
then bar(/)
else throw gRet ()

cont joinK () =
...
throw fooRet ()

in
g (_ / joinK)

Stack	(grows	down)

foo’s	Return	Cont.

g’s	Return	Cont.

Conclusion	and	Ongoing	Work

• Direct	style	conversion	can	be	done	easily	during	closure	conversion.

• Ongoing	Work	

• Dedicated	stack-based	cont primitives	(newStack,	etc.)

• Extending	LLVM	to	support	first-class	stack-based	conts.

